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Why does a 50 year-old 
technology dominate modern 

computing?
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Resources

● Mike Gancarz, The UNIX Philosophy
(1995, Digital Press)

● Eric Raymond, The Art of UNIX 
Programming (2004, Addison-Wesley)

● Thomas Scoville, “UNIX as Literature” 
(1998, Miller Freeman)

● Richard Gabriel, “The Rise of Worse is 
Better” (1989) 



  

The UNIX Philosophy
● Assume that users are intelligent and know 

what they’re doing.
– “UNIX gives you just enough rope to hang 

yourself—and then a couple of more feet, just to 
be sure.”

– “UNIX was not designed to stop you from doing 
stupid things, because that would also stop you 
from doing clever things.”

● Complexity is dangerous:
privilege simplicity above correctness, 
consistency, and completeness.

● Nobody can predict the future; be humble 
and remain flexible.



  

The UNIX Environment
● UNIX is not merely a platform upon which 

to run applications; rather, the 
commandline is your primary interface.

● A properly designed UNIX program, shell 
script, or shell function will integrate into 
your environment; can think of UNIX 
programs as “extensions” or “plugins” to 
the environment.

● Over the long-term, you customize your 
environment to your needs, preferences, 
and style.



  

Gancarz’s Tenets of UNIX
1. Small is beautiful

2. Make each program do one thing well.

3. Build a prototype as soon as possible.

4. Choose portability over efficiency

5. Store [numerical] data in flat ASCII files.

6. Use software leverage to your advantage.

7. Use shell scripts to increase leverage and
portability.

8. Avoid captive user interfaces.

9. Make every program a filter.



  

Small is beautiful; Make each 
program do one thing well

Small programs:
● are easy to understand.
● are easy to maintain.
● consume fewer system resources.
● are easier to combine with other 

tools.



  

 Make every program a filter; 
Avoid captive user interfaces

● All computer programs are filters; 
UNIX makes this explicit and puts the 
user in control.
– cf., GUI applications and

racist machine learning algorithms
● CUIs trap data and assume that their 

user is human, which means that they 
don’t interface well with other 
programs.



  

 Build a prototype as soon as 
possible

● Shell scripting encourages rapid, 
iterative test/rewrite development
– cf., Manifesto for Agile Software Development 

(2001)

● “Worse is better”
– Seek the 90% solution
– “When in doubt, use brute force.”



  

 Choose portability over 
efficiency; Store [numerical] data 

in flat ASCII files
● The UNIX environment generally 
assumes plain text and, therefore, 
provides a rich set of line-oriented text 
manipulation tools (e.g., editors and 
version control) and languages (e.g., 
grep/sed/awk, sort|uniq -c, calc/bc/dc).

● stdin, stdout, and stderr don’t 
distinguish between plain text and 
binary streams. 



  

 Use software leverage to your 
advantage; Use shell scripts to 

increase leverage and portability
● Shell scripts allow you to build up your 

analysis incrementally by piping from 
stdout to stdin.

● Other programs are treated as black boxes.
● Is often easier to call other programs from 

the shell than to shell out.
● Shell pipelines are often highly performant
● But: largely unidirectional (FIFOs and temp 

files can help here).



  

“UNIX is user-friendly.  It’s just picky 
about who its friends are.”
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