

Introduction to the UNIX Environment:
Computing as Praxis

Claude Rubinson, Ph.D.
University of Houston—Downtown

rubinsonc@uhd.edu
cjr@grundrisse.org

ACM UHD
Houston, Texas

October 29, 2019

Why does a 50 year-old
technology dominate modern

computing?

 OpenServer
6.x

 UnixWare
7.x

(System V
R5)

 HP-UX
11i+

1969

1971 to 1973

1974 to 1975

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001 to 2004

2006 to 2007

2008

2005

 2009

 2010

 2011

 2012 to 2015

 2016

 2017

 Open source

 Mixed/shared source

 Closed source

 HP-UX
1.0 to 1.2

 OpenSolaris
& derivatives
(illumos, etc.)

 System III

 System V
R1 to R2

 OpenServer
5.0.5 to 5.0.7

 OpenServer
5.0 to 5.04

 SCO UNIX
3.2.4

 SCO Xenix
V/386

 SCO Xenix
V/386

 SCO Xenix
V/286

 SCO Xenix

 Xenix
3.0

 Xenix
1.0 to 2.3

 PWB/Unix

 AIX
1.0

 AIX
3.0-7.2

 OpenBSD
2.3-6.1

 OpenBSD
1.0 to 2.2

 SunOS
1.2 to 3.0

 SunOS
1 to 1.1

 Unix/32V

 Unix
Version 1 to 4

 Unix
Version 5 to 6

 Unix
Version 7

 Unnamed PDP-7 operating system

 BSD
1.0 to 2.0

 BSD
3.0 to 4.1

 BSD 4.2

 Unix
Version 8

 Unix
9 and 10

(last versions
from

Bell Labs)

 NexTSTEP/
OPENSTEP
1.0 to 4.0

 Mac OS X
Server

 Mac OS X,
OS X,

macOS
10.0 to 10.12

(Darwin
1.2.1 to 17)

 Minix
1.x

 Minix
2.x

 Minix
3.1.0-3.4.0

 Linux
2.x

 Linux
0.95 to 1.2.x

 Linux 0.0.1

 BSD
4.4-Lite

&
Lite Release 2

 NetBSD
0.8 to 1.0

 NetBSD
1.1 to 1.2

 NetBSD 1.3

 NetBSD
1.3-7.1

 FreeBSD
1.0 to
2.2.x

 386BSD

 BSD Net/2

 Solaris
10

 Solaris
11.0-11.3

 System V
R4

 Solaris
2.1 to 9

 BSD 4.3

 SunOS
4

 HP-UX
2.0 to 3.0

 HP-UX
6 to 11

 System V
R3

 UnixWare
1.x to 2.x
(System V

R4.2)

 BSD 4.3
Tahoe

 BSD 4.3
Reno

 FreeBSD
3.0 to 3.2

 FreeBSD
3.3-11.x

 Linux
3.x

 Linux
4.x OpenServer

10.x

1969

1971 to 1973

1974 to 1975

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001 to 2004

2006 to 2007

2008

2005

 2009

 2010

 2011

 2012 to 2015

 2016

 2017

 DragonFly
BSD

1.0 to 4.8

 BSD Net/1

 Unix-like systems

Resources

● Mike Gancarz, The UNIX Philosophy
(1995, Digital Press)

● Eric Raymond, The Art of UNIX
Programming (2004, Addison-Wesley)

● Thomas Scoville, “UNIX as Literature”
(1998, Miller Freeman)

● Richard Gabriel, “The Rise of Worse is
Better” (1989)

The UNIX Philosophy
● Assume that users are intelligent and know

what they’re doing.
– “UNIX gives you just enough rope to hang

yourself—and then a couple of more feet, just to
be sure.”

– “UNIX was not designed to stop you from doing
stupid things, because that would also stop you
from doing clever things.”

● Complexity is dangerous:
privilege simplicity above correctness,
consistency, and completeness.

● Nobody can predict the future; be humble
and remain flexible.

The UNIX Environment
● UNIX is not merely a platform upon which

to run applications; rather, the
commandline is your primary interface.

● A properly designed UNIX program, shell
script, or shell function will integrate into
your environment; can think of UNIX
programs as “extensions” or “plugins” to
the environment.

● Over the long-term, you customize your
environment to your needs, preferences,
and style.

Gancarz’s Tenets of UNIX
1. Small is beautiful

2. Make each program do one thing well.

3. Build a prototype as soon as possible.

4. Choose portability over efficiency

5. Store [numerical] data in flat ASCII files.

6. Use software leverage to your advantage.

7. Use shell scripts to increase leverage and
portability.

8. Avoid captive user interfaces.

9. Make every program a filter.

Small is beautiful; Make each
program do one thing well

Small programs:
● are easy to understand.
● are easy to maintain.
● consume fewer system resources.
● are easier to combine with other

tools.

 Make every program a filter;
Avoid captive user interfaces

● All computer programs are filters;
UNIX makes this explicit and puts the
user in control.
– cf., GUI applications and

racist machine learning algorithms
● CUIs trap data and assume that their

user is human, which means that they
don’t interface well with other
programs.

 Build a prototype as soon as
possible

● Shell scripting encourages rapid,
iterative test/rewrite development
– cf., Manifesto for Agile Software Development

(2001)

● “Worse is better”
– Seek the 90% solution
– “When in doubt, use brute force.”

 Choose portability over
efficiency; Store [numerical] data

in flat ASCII files
● The UNIX environment generally
assumes plain text and, therefore,
provides a rich set of line-oriented text
manipulation tools (e.g., editors and
version control) and languages (e.g.,
grep/sed/awk, sort|uniq -c, calc/bc/dc).

● stdin, stdout, and stderr don’t
distinguish between plain text and
binary streams.

 Use software leverage to your
advantage; Use shell scripts to

increase leverage and portability
● Shell scripts allow you to build up your

analysis incrementally by piping from
stdout to stdin.

● Other programs are treated as black boxes.
● Is often easier to call other programs from

the shell than to shell out.
● Shell pipelines are often highly performant
● But: largely unidirectional (FIFOs and temp

files can help here).

“UNIX is user-friendly. It’s just picky
about who its friends are.”

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

