Qualitative Comparative Analysis in Practice: Why, When, and How?

> Claude Rubinson University of Houston—Downtown Houston, TX

rubinsonc@uhd.edu http://gator.uhd.edu/~rubinsonc/ http://grundrisse.org/qca/

University of Colorado School of Medicine Adult and Child Consortium for Health Outcomes Research and Delivery Science April 26, 2018

Outline

- Day 1: Introduction and Overview of QCA
 - Review of QCA resources, publications, and software
 - QCA as an investigation of invariance
 - Three analytic components of QCA: dataset calibration, necessity analysis, and sufficiency analysis
 - Three types of QCA projects: identifying causal recipes, uncovering taxonomies, understanding context
- Day 2: The Details of Why, When, and How
 - Review
 - Dataset calibration
 - Necessity analysis
 - Consistency and coverage measures for necessity
 - Testing for necessary conditions
 - Sufficiency analysis
 - Consistency and coverage measures for sufficiency
 - Constructing and reducing truth tables
 - Interrogating the analysis and deriving solutions

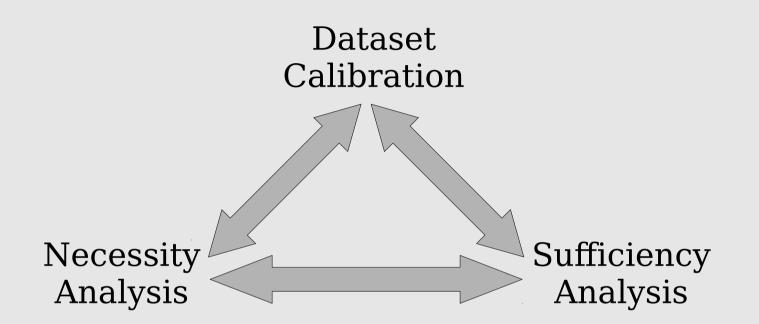
QCA as the Study of Invariance

- QCA is a case-oriented, set-theoretic technique for identifying invariant relationships by analyzing the strength of superset/subset relationships
 - Tenured faculty tend to have many publications
 - Religious fundamentalists tend to be politically conservative
 - HIV causes AIDS (i.e., the set of people with AIDS is a subset of the set of people exposed to HIV)
 - Pregnancy termination may occur due to miscarriage or elective abortion

QCA as the Study of Invariance

Boolean Algebra

- UPPERCASE for the presence of a condition
- lowercase or ~ for the absence of a condition
- Negation


$$\begin{array}{rcl} \sim \mathsf{A} &=& 1 &- & \mathsf{A} \\ \mathsf{a} &=& 1 &- & \mathsf{A} \end{array}$$

- Logical and (Boolean multiplication/Set intersection)
 A•b = Ab = min(A,b)
- Logical or (Boolean addition/Set union)
 A+b = max(A,b)

Distinguishing Features of QCA

- Assumption of invariance
- Assumption of causal complexity
 - Identification of necessary and sufficient conditions
 - There can be multiple paths to the same outcome
- No degrees-of-freedom restrictions
 - Appropriate for small-, medium-, and large-N analysis
- Encourages retroductive analysis (moving back and forth between theory and data)
 - Uses a malleable analytic frame
 - Must identify, measure, and scale (calibrate) your causal conditions and outcome
 - Dataset must include both positive and negative outcomes
 - Identifying and resolving contradictions is key

Three Analytic Components of QCA

Calibrating Datasets

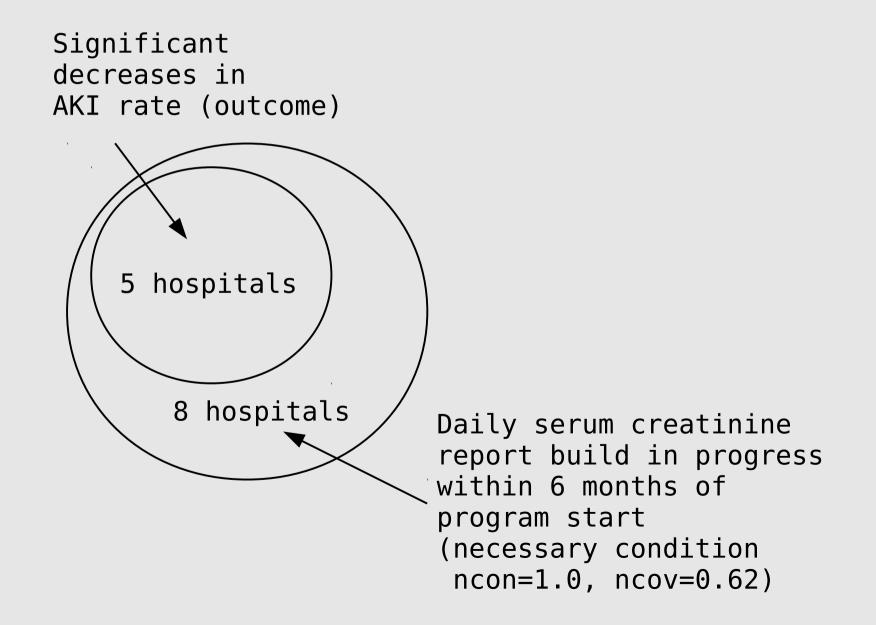
Data Set Calibration

- Instrument calibration is routine in the natural sciences; largely absent in the social sciences.
- Scientific data collection and measurement typically emphasizes relative effects: Paul is poorer than Peter; the United States' infant mortality rate is greater than that of Japan.
- Calibration allows us to state that an individual is poor or that a country's infant mortality rate is high.
- Calibration requires application of theoretical and substantive knowledge: A T-cell count of below 200 µL of blood is sufficient to diagnose AIDS

Calibrating Fuzzy Sets

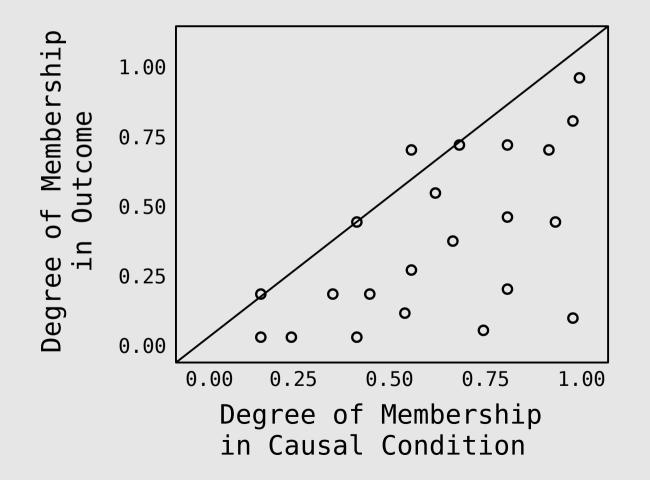
Crisp set	Three-value fuzzy set	Four-value fuzzy set	Six-value fuzzy set	Continuous fuzzy set
1 = fully in	1 = fully in	1 = fully in	1 = fully in	1 = fully in
	0.67 = more in than out	0.67 = more in than out	0.8 = mostly but not fully in 0.6 = more or less in	Degree of membership is more "in" than "out" 0.5 < X < 1
	0.!	5 = Crossover F	oint	
		0.33 = more out than in	0.4 = more or less out 0.2 = mostly but not fully out	Degree of membership is more "out" than "in" 0.0 < X < 0.5
0 = fully out	0 = fully out	0 = fully out	0 = fully out	0 = fully out

Calibrating Fuzzy Sets

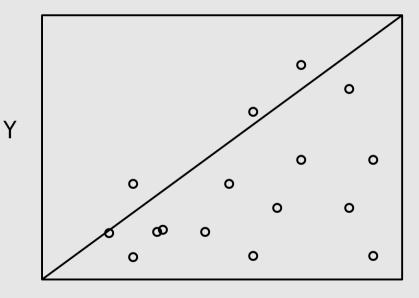

- Methods of calibration:
 - Manually
 - "Direct" Method
 - "Indirect" Method
- Fuzzy sets are asymmetrical
- Fuzzy sets vs crisp-sets vs dummy variables
- Fuzzy sets vs multi-valued sets

Analyzing Necessary Conditions

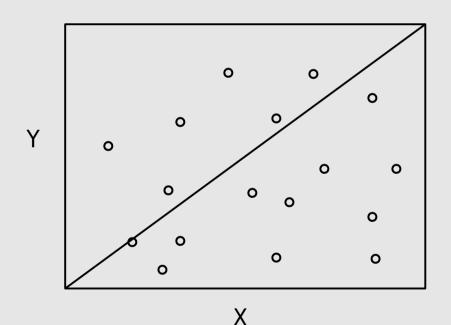
Necessity Analysis


- Underdeveloped in the literature; QCA development has focused on sufficiency analysis
- *Kirq* and *acq* have sophisticated necessity testing

Necessary Conditions Outcome is subset of cause: Causal condition must (almost always) be present for outcome to occur.

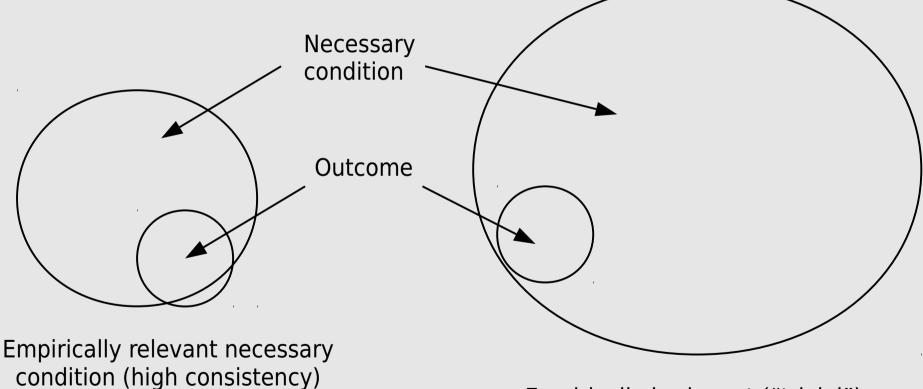

Fuzzy Subset Relationship Consistent with Necessity

Outcome is a subset of Cause ($X \ge Y$)


Assessing Necessary Conditions

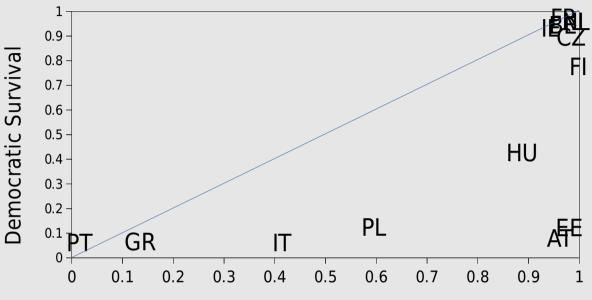
• *Consistency* measures degree to which subset relationship is "consistent" with necessity

Х


Subset relationship consistent with necessity

Subset relationship with substantial inconsistency

Assessing Necessary Conditions


Coverage measures how "relevant" a necessary condition is

Empirically irrelevant ("trivial") necessary condition (perfect consistency)

Testing for Necessary Conditions

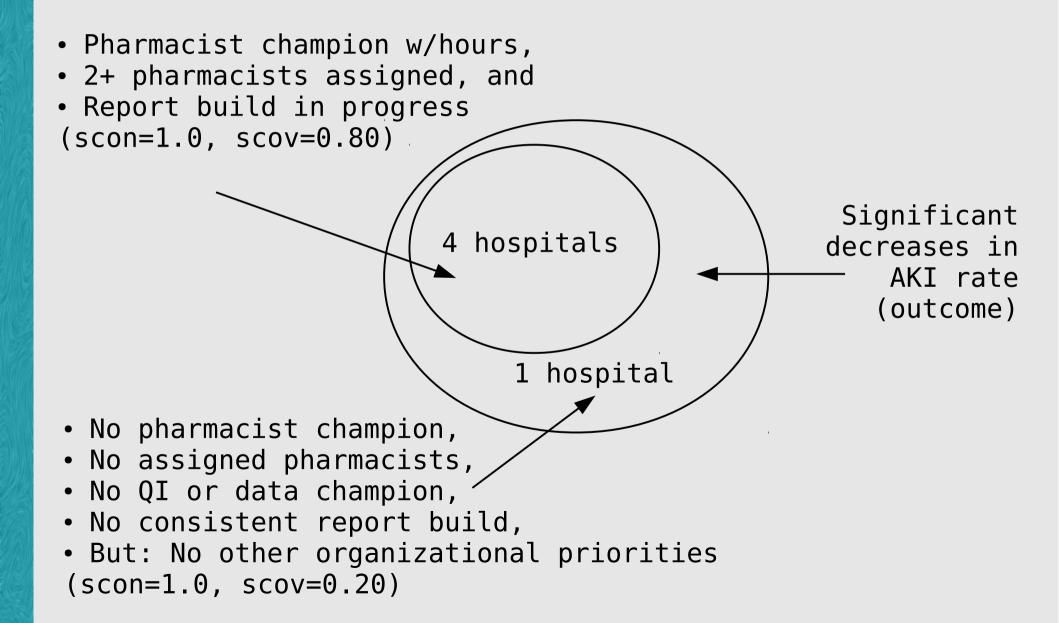
Obs	Dev	Urb	Lit	Sur
AT	.81	.12	.99	.05
BE	.99	.89	.98	.95
CZ	.58	.98	.98	.89
EE	.16	.07	.98	.12
FI	.58	.03	.99	.77
FR	.98	.03	.99	.95
DE	.89	.79	.99	.05
GR	.04	.09	.13	.06
HU	.07	.16	.88	.42
IE	.72	.05	.98	.92
IT	.34	.10	.41	.05
NL	.98	1.00	.99	.95
PL	.02	.17	.59	.12
PT	.01	.02	.01	.05

Membership in Set of Literate Countries

Term	Consis	Cov
LIT	0.99	0.58
Solution	0.99	0.58

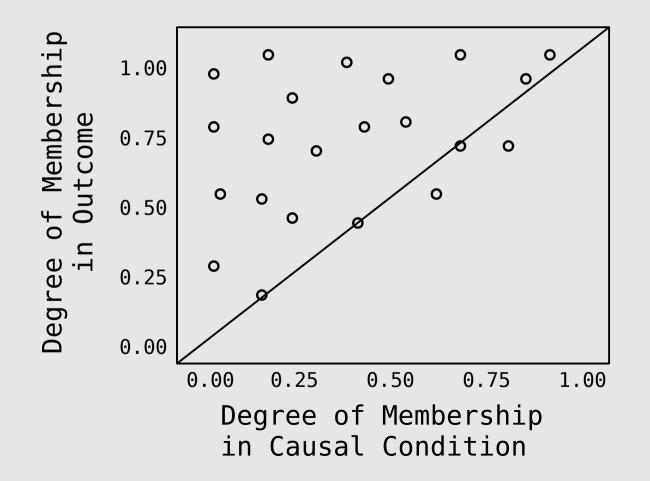
Testing for Necessary Conditions

- Assess consistency before coverage
- Join terms with logical or (e.g., A+B+C)
- Many solutions are possible
- Use of theory is crucial

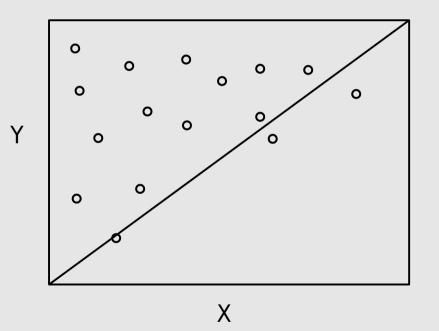

Analyzing Sufficient Conditions

Sufficiency Analysis

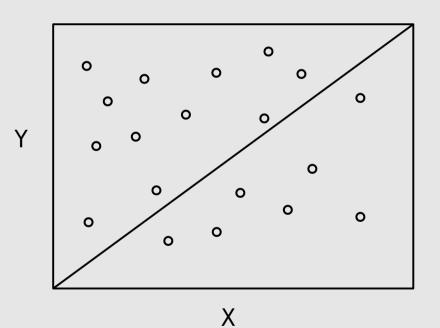
- More mature than necessity analysis; QCA development—and applications—have focused on sufficiency analysis
- Emphasis on causal complexity (a.k.a., multiple conjunctural causation, "recipes," or equifinality; also, INUS conditions)


Feature	fs/QCA	Kirq & acq
Based on RSI Algorithms	\checkmark	\checkmark
Complex Solutions	\checkmark	\checkmark
Intermediate Solutions	\checkmark	
Parsimonious Solutions	\checkmark	\checkmark
Impossible Conditions		\checkmark
Contradictions		

Sufficient Conditions Cause is subset of outcome: Outcome (almost) always occurs when causal condition is present.

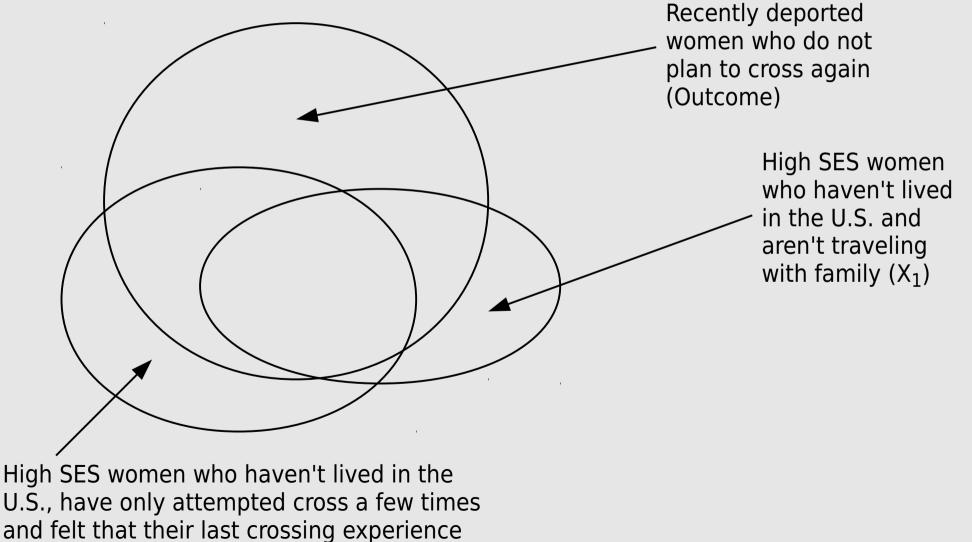

Fuzzy Subset Relationship Consistent with Sufficiency

Cause is a subset of Outcome ($Y \ge X$)



Assessing Sufficient Conditions

• *Consistency* measures degree to which subset relationship is "consistent" with sufficiency


Subset relationship consistent with sufficiency

Subset relationship with substantial inconsistency

Assessing Sufficient Conditions

 Coverage measures the relative "importance" of each solution

was very dangerous (X₂)

Assessing Sufficient Conditions

 Coverage measures the relative "importance" of each solution

was very dangerous (X_2)

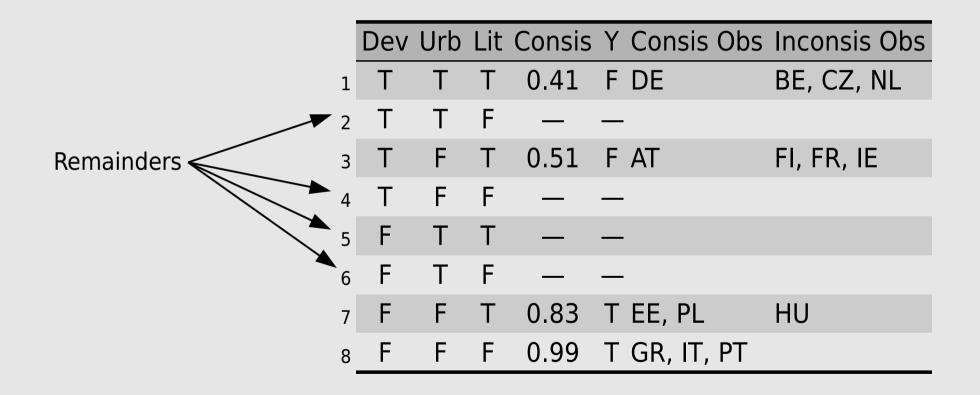
Testing for Sufficient Conditions

Term	Consis	Raw Cov	Uniq Cov
HISES*liveus*travfam +	0.90	0.32	0.13
HISES*liveus*numcross*DANGER	0.82	0.46	0.26
Solution	0.86	0.58	

Truth Table Construction Truth table algorithm sorts observations into types

Obs	Dev	Urb	Lit	Brk
AT	.81	.12	.99	.95
BE	.99	.89	.98	.05
CZ	.58	.98	.98	.11
EE	.16	.07	.98	.88
FI	.58	.03	.99	.23
FR	.98	.03	.99	.05
DE	.89	.79	.99	.95
GR	.04	.09	.13	.94
HU	.07	.16	.88	.58
IE	.72	.05	.98	.08
IT	.34	.10	.41	.95
NL	.98	1.00	.99	.05
PL	.02	.17	.59	.88
PT	.01	.02	.01	.95

	Dev	Urb	Lit	Consis	Y	Consis Obs	Inconsis Obs
1	Т	Т	Т	0.41	F	DE	BE, CZ, NL
2	Т	Т	F	—			
3	Т	F	Т	0.51	F	AT	FI, FR, IE
4	Т	F	F	—			
5	F	Т	Т	—			
6	F	Т	F	—			
7	F	F	Т	0.83	Т	EE, PL	HU
8	F	F	F	0.99	Т	GR, IT, PT	


Reading Truth Tables Truth table assesses consistency between types and outcome

Democracy usually did not break down in countries that were (a) developed, urbanized, and literate (row 1) or (b) developed, not urbanized, and literate (row 3).

Democracy usually did break down in countries that were (c) not developed, not urbanized, and literate (row 7) or (d) not developed, not urbanized, and not literate (row 8)

	Dev	Urb	Lit	Consis	Y	Consis Obs	Inconsis Obs
1	Т	Т	Т	0.41	F	DE	BE, CZ, NL
2	Т	Т	F	—			
3	Т	F	Т	0.51	F	AT	FI, FR, IE
4	Т	F	F	—			
5	F	Т	Т	—			
6	F	Т	F	—			
7	F	F	Т	0.83	Т	EE, PL	HU
8	F	F	F	0.99	Т	GR, IT, PT	

Remainders are logically possible conditions lacking empirical instances

Invariance in Truth Tables

	Dev	Urb	Consis	Y	Consis Obs	Inconsis Obs
1	Т	Т	0.41	F	DE	BE, CZ, NL
2	Т	F	0.51	F	AT	FI, FR, IE
3	F	Т	—	—		
4	F	F	0.89	Т	EE, GR, IT, PL, PT	HU

1	Dev	Urb	Lit	Consis	Y	Consis Obs	Inconsis Obs
1	Т	Т	Т	0.41	F	DE	BE, CZ, NL
2	Т	Т	F	—			
3	Т	F	Т	0.51	F	AT	FI, FR, IE
4	Т	F	F				
5	F	Т	Т	—			
6	F	Т	F				
7	F	F	Т	0.83	Т	EE, PL	HU
8	F	F	F	0.99	Т	GR, IT, PT	

To Primitive Expressions:

Term	Consis	Raw Cov	Uniq Cov	Observations
dev*urb*LIT +	0.83	0.42	0.27	EE, PL, [HU]
dev*urb*lit	0.99	0.40	0.24	GR, IT, PT
Solution	0.88	0.66		

To Primitive Expressions:

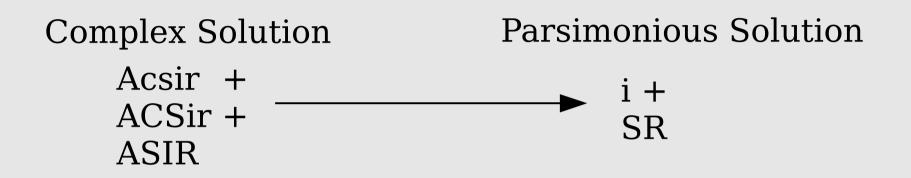
Term	Consis	Raw Cov	Uniq Cov	Observations
dev*urb*LIT +	0.83	0.42	0.27	EE, PL, [HU]
dev*urb*lit	0.99	0.40	0.24	GR, IT, PT
Solution	0.88	0.66		

To Prime Implicants:

Term	Consis	Raw Cov	Uniq Cov	Observations
dev*urb	0.89	0.71	0.71	EE, PL, GR, IT, PT, [HU]
Solution	0.89	0.71		

Reduce Prime Implicants (Complex Solution):

Term	Consis	Raw Cov	Uniq Cov	Observations
dev*urb	0.89	0.71	0.71	EE, PL, GR, IT, PT, [HU]
Solution	0.89	0.71		


Reduce Prime Implicants (Complex Solution):

Term	Consis	Raw Cov	Uniq Cov	Observations
dev*urb	0.89	0.71	0.71	EE, PL, GR, IT, PT, [HU]
Solution	0.89	0.71		

Reduce Prime Implicants Using Remainders (Parsimonious Solution):

Term	Consis	Raw Cov	Uniq Cov	Observations
dev	0.82	0.73	0.73	EE, PL, GR, IT, PT, [HU]
Solution	0.82	0.73		

Constructing Intermediate Solutions Manually, or via directional expectations

Multiple intermediate solutions are possible:

