From R to Python to OCaml: Set-Theoretic Analysis for the (Social) Sciences

Claude Rubinson University of Houston—Downtown cjr@grundrisse.org rubinsonc@uhd.edu http://grundrisse.org/QCA/ http://gator.uhd.edu/~rubinsonc/

> Houston Functional Programmers Houston, Texas May 17, 2017

Overview

- Introduction to QCA
- History of QCA software
- First (mis-)steps in developing acq & Kirq: the fsQCA package for R
- Second implementation: Python
 - Benefits and limitations of Python
- Third implementation: OCaml
 - Why OCaml?
 - Initial benefits of OCaml and functional programming
 - Software architecture
 - Unresolved issues

 A method of conducting social research by analyzing subset relationships, using Boolean algebra

- A method of conducting social research by analyzing subset relationships, using Boolean algebra
- Example: Religious fundamentalists tend to be politically conservative.

- A method of conducting social research by analyzing subset relationships, using Boolean algebra
- Example: Wealthy individuals tend to come from privileged families.

- Particularly concerned with two types of causal relationships: necessary conditions and sufficient conditions
 - Absence of necessary condition means that outcome will (probably) not occur
 - Presence of sufficient condition means that outcome will occur, all or most of the time
 - Necessary and sufficient conditions may be complex ("multiple conjunctural causation")

- Necessary condition: cause must be present for outcome to occur
- Example: Must be exposed to HIV to contract AIDS

- Sufficient condition: if cause occurs, outcome will occur
- Example: Elective abortion *or* miscarriage will terminate pregnancy

• Sufficient condition: if cause occurs, outcome will occur Recently deported

women who do not plan to cross again (Outcome)

High SES women who haven't lived in the U.S. and aren't traveling with family (X_1)

High SES women who haven't lived in the U.S., have only attempted cross a few times and felt that their last crossing experience was very dangerous (X_2)

 Sufficient condition: if cause occurs, outcome will occur
 Recently deported

women who do not plan to cross again (Outcome) High SES women who haven't lived in the U.S. and aren't traveling with family (X_1) Women belonging to sets X_1 and X_2

High SES women who haven't lived in the U.S., have only attempted cross a few times and felt that their last crossing experience was very dangerous (X_2)

- Challenges conventional statistical analysis, which is based upon linear-additive model
- Complements other set-theoretic research methods (e.g., SNA and QNA)
- Does not depend upon degrees of freedom, so is useful for small-, medium-, and large-N studies
- Encourages a research process that is "retroductive" and "case-oriented"

Recent Black Migrants	Weak Union	Black Strikebreaking	Observations
Т	Т	Т	East Chicago, Pittsburgh, Youngstown
Т	F	Con	Buffalo, Chicago, Gary, Johnstown, [Cleveland]
F	Т	F	Bethlehem, Joliet, McKeesport, Milwaukee, New Castle, Reading
F	F	F	Decatur, Wheeling

Recent Black Migration	Weak Union	Local Govt Repression	Black Strikebreaking	Observations
т	Т	Т	Т	East Chicago, Pittsburgh, Youngstown
Т	Т	F	—	
Т	F	Т	Т	Buffalo, Chicago, Gary, Johnstown
Т	F	F	F	Cleveland
F	Т	Т	F	Bethlehem, Joliet, McKeesport, New Castle, Reading
F	Т	F	F	Milwaukee
F	F	Т	F	Decatur
F	F	F	F	Wheeling

Recent Black Migration	Weak Union	Local Govt Repression	Black Strikebreaking	Observations
Т	Т	Т	Т	East Chicago, Pittsburgh, Youngstown
Т	Т	F	—	
Т	F	Т	Т	Buffalo, Chicago, Gary, Johnstown
Т	F	F	F	Cleveland
F	Т	Т	F	Bethlehem, Joliet, McKeesport, New Castle, Reading
F	Т	F	F	Milwaukee
F	F	Т	F	Decatur
F	F	F	F	Wheeling

Recent Black Migration	Weak Union	Local Govt Repression	Black Strikebreaking	Observations
Т	Т	Т	Т	East Chicago, Pittsburgh, Youngstown
Т	F	Т	Т	Buffalo, Chicago, Gary, Johnstown
		RBM * RBM *	WU * LGR ~WU * LGR = B	+ lack Strikebreaking

Recent Black	Weak	Local Govt	Black	
Migration	Union	Repression	Strikebreaking	Observations
Т	Т	Т	Т	East Chicago, Pittsburgh, Youngstown
Т	F	Т	Т	Buffalo, Chicago, Gary, Johnstown
		RBM * RBM *	WU * LGR ~WU * LGR = B	+ lack Strikebreaking
		RBM *	$LGR = B^{-1}$	lack Strikebreaking

Technical and Usability Challenges

- QCA algorithms are:
 - NP-hard (no exact algebraic solution)
 - $O(2^N)$ complexity, where N is number of variables (not observations) in the data set
 - but, because data sets tend to be small and matrix algebra isn't used, no need for high performance numerical computation library
- How to maintain and encourage retroductive, case-oriented research process?
- How to make software that's efficient, useful, and usable?

Design Goals

- Software that is efficient, useful, and usable:
 - Follow the Unix philosophy
 - Crossplatform and user-friendly
 - Support and encourage good QCA research practices; facilitate close enagement with cases and retroduction
 - Support case-oriented and qualitative research
- Also important:
 - Good performance
 - Avoid sucking up all of my time
 - Fun!

fsQCA module for R "Plan to throw one away; you will, anyhow"

- Cross-platform, but requires R
- Not user-friendly
- Too slow
- R programming "considered harmful"
- But: allowed me to realize that the user interface should be task-oriented

Second Implementation: Python

- acq: QCA at the Unix commandline
 - a "scratch my own itch" project
- Kirq: QCA for everybody else
 - a user-friendly, crossplatform GUI program Why Python?
- The surrounding ecosystem
 - Ability to hire others
 - Confidence that the supporting environment is stable and will continue to be maintained
 - Python is *lingua franca* in academia
 - Rich environment for GUI toolkits, installers, etc.
 - Chose Qt for GUI toolkit; PyInstaller for distribution

Lessons Learned

- acq is fewer lines of code than previous R module, and faster
 - compare to QCA module for R
- Less concern for performance means more attention to functionality and user-interface issues
- Writing acq as Unix shell scripts helped me streamline the QCA analysis; acq and Kirq make it easy to modify and rerun analyses
- Easy to add new functionality to acq
- Have designed Kirq to facilitate interrogation and comparisons of solutions
- Lots of GUI niceties, such as tooltips and pop-out windows
- Session history is Kirq's killer feature
- Importance of "eating your own dogfood"

Using Python for Academic Projects

- Advantages:
 - Core language is relatively compact, with excellent documentation
 - Relatively easy to find developers
 - Strong, well-developed environment of GUI toolkits, installers, etc.
 - Decent performance out of the box, with some ability to optimize
- Disadvantages:
 - Out-of-box performance often too slow; optimization often difficult
 - Bit rot of external libraries (Windows 10 is especially problematic)
 - Package distribution is a mess, as is associated documentation
 - Standard library not compact; churn is too rapid to keep up with for part-time developer
 - Introductory and intermediate dead-tree documentation is lousy
 - Online signal-to-noise ratio is low
 - Community too insular; overly concerned with "idiomatic Python"

Violating Spolsky's Rule #1: "Never rewrite code from scratch"

- Issues with Python:
 - Performance
 - Maintenance and distribution
 - Rapidly expanding ecosystem; falling signal-to-noise ratio
 Not fun!
- Why OCaml? (and why not Haskell?)
 - Compact, stable language with clear syntax
 - Small, highly-curated standard library
 - Small community; very high signal-to-noise ratio
 - Practical multiparadigmatic language
 - http://roscidus.com/blog/blog/2014/06/06/python-to-ocaml
 retrospective/
 - Fun!

Initial Benefits of Functional Programming and OCaml

- Easier to reason about code
 - Higher level of abstraction
 - State changes eliminated/restricted to individual functions
 - Eliminates many mundane errors; reduces need for testing
 - Compact language
 - Small ecosystem: relatively few resources and documentation, but high quality
 - Tuareg mode and Merlin
- OCaml's type system
 - Eliminates many classes of errors
 - Encourages explicit design; discourages programming-by-coincidence
 - Pattern matching forces one to think about and address entire domain
- Thinking in terms of types is revelatory
 - Clarifies dependencies within the program
 - Clarifies how different aspects of the program interact with one another
 - QCA algorithms are fundamentally recursive
 - Have solved a number of outstanding problems in $\ensuremath{\mathsf{QCA}}$

Software Architecture "The general tendency is to over-design the second system"

Basic QCA software workflow

Three discrete-but-interconnected components

- Import, create, edit, and calibrate data
 - "Be liberal in what you accept, and conservative in what you send."
 - Fuzzy set calculations
 - Doman-specific operations
- Select data for analysis
 - Selection of conditions
 - Subset data via Boolean expression
- Visualize data

Data editor/

viewer

Analytic toolkit

GUI and CLI Interfaces

- Is essentially Kirq (GUI) and acq (CLI) integrated into a single application
 - Keeps GUI simple and user-friendly
 - Easier to add new features to CLI
- GUI provides core analytic functions, plus session history
- CLI interface provides advanced analytic functions, including results interrogation and robustness tests
- CLI interface also embedded as CUI into GUI to permit advanced analysis and provide access to new features

GUI and CLI, plus web-frontend

- Focus on small & medium-N data sets
- Standardize inputs; automatically convert between various QCA objects
- Invoke various backends (e.g., TikZ or GnuPlot) as needed; invisible to user
- Plug-in architecture
 - Relatively easy to add/update visualizations
 - Register available visualizations on startup
 - Specify input, output, and required parameters
 - Generate backend code

Visualizer

Visualizer

QCAViz Workflow

Input Serialized representations of QCA object(s) (Calibrated data, truth table, and/or consistency/coverage solutions) Pre-processing Validation, convert to appropriate type, collect user-specified parameters, etc Generate backend code Hand off to plug-in script for code generation (GnuPlot, GraphViz, TikZ, etc) Post-processing *Output:* • Render image, or • Convert and save to SVG, EPS, etc, or Output raw code for producing image

Unresolved Issues

- Choice of GUI toolkit
- Communication among data editor, analytic toolkit, and visualizer
- For analytic toolkit, interface (if any) between GUI and CUI
- Do I really need to build a data editor?
- Should the editor be developed as a standalone application?
- Is this a second system?