Qualitative Comparative Analysis

Claude Rubinson University of Houston—Downtown Houston, TX rubinsonc@uhd.edu

> Emory University May 17—18, 2011

Overview

- Retroductive nature of QCA
- Data set calibration
- Analyzing Necessary Conditions
 - Consistency and coverage measures for necessity
 - Testing for necessary conditions
- Analyzing Sufficient Conditions
 - Consistency and coverage measures for sufficiency
 - Constructing truth tables
 - Reducing truth tables
 - Interrogating the solutions

Retroductive Nature of QCA Example: Brown and Boswell (1995)

Truth Table with Contradiction (from Table 4 of Brown and Boswell 1995)

Recent Black Migrants	Weak Union	Black Strikebreaking	Observations
Т	Т	Т	East Chicago, Pittsburgh, Youngstown
Т	F	Con	Buffalo, Chicago, Gary, Johnstown, [Cleveland]
F	Т	F	Bethlehem, Joliet, McKeesport, Milwaukee, New Castle, Reading
F	F	F	Decatur, Wheeling

Retroductive Nature of QCA Example: Brown and Boswell (1995)

Revised Truth Table without Contradiction (from Table 5 of Brown and Boswell 1995)

Recent Black Migrants	Weak Union	Local Govt Repression	Black Strikebreaking	Observations
Т	Т	Т	Т	East Chicago, Pittsburgh, Youngstown
Т	Т	F	—	
Т	F	Т	Т	Buffalo, Chicago, Gary, Johnstown
Т	F	F	F	Cleveland
F	Т	Т	F	Bethlehem, Joliet, McKeesport, New Castle, Reading
F	Т	F	F	Milwaukee
F	F	Т	F	Decatur
F	F	F	F	Wheeling

Boolean Algebra

- UPPERCASE for the presence of a condition
- lowercase for the absence/negation of a condition
- Negation $\sim A = 1 - A$ a = 1 - A
- Logical and (Boolean multiplication)
 A•b = Ab = min(A,b)
- Logical or (Boolean addition)
 A+b = max(A,b)

Calibrating Data Sets

Data Set Calibration

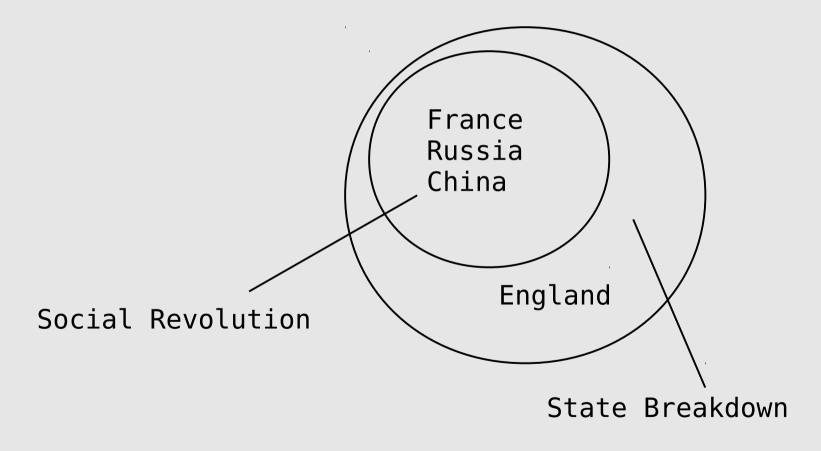
- Instrument calibration is routine in the natural sciences; largely absent in the social sciences.
- Social sciences emphasize relative effects: Paul is poorer than Peter; the United States is more democratic than North Korea.
- Calibration allows us to state that an individual is poor or that a country is democratic.
- Calibration requires application of theoretical and substantive knowledge.

Calibrating Fuzzy Sets

Crisp set	Three-value fuzzy set	Four-value fuzzy set	Six-value fuzzy set	Continuous fuzzy set
1 = fully in	1 = fully in	1 = fully in	1 = fully in	1 = fully in
	0.67 = more in than out	0.67 = more in than out	0.8 = mostly but not fully in 0.6 = more or less in	Degree of membership is more "in" than "out" 0.5 < X < 1
	0.!	5 = Crossover F	1	
		0.33 = more out than in	0.4 = more or less out 0.2 = mostly but not fully out	Degree of membership is more "out" than "in" 0.0 < X < 0.5
0 = fully out	0 = fully out	0 = fully out	0 = fully out	0 = fully out

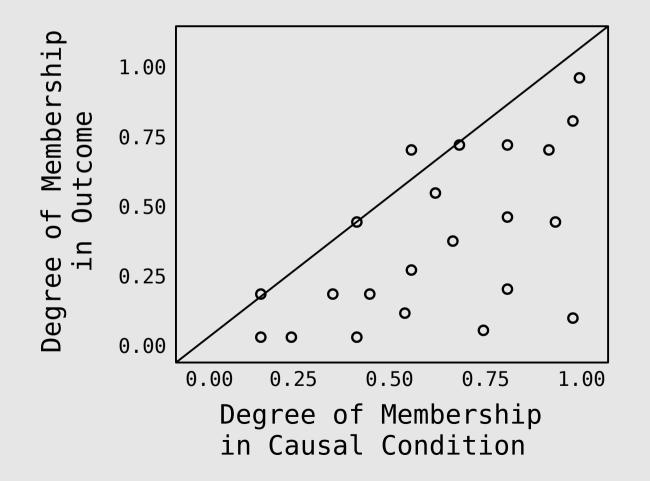
Calibrating Fuzzy Sets

- Fuzzy sets are asymmetrical
- Fuzzy sets vs crisp-sets
- Fuzzy sets vs multi-valued sets vs dummy variables

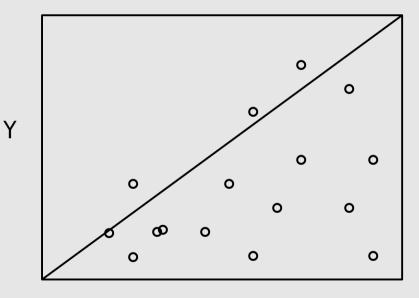

Analyzing Necessary Conditions

Necessity Analysis

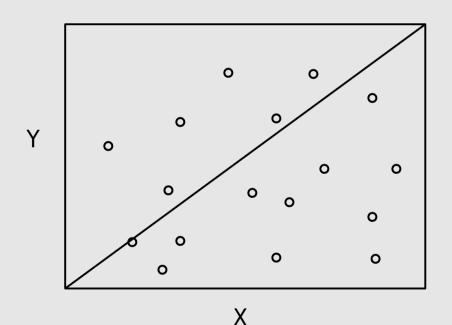
- Underdeveloped in the literature; QCA development has focused on sufficiency analysis
- libfsqca-based software has sophisticated necessity testing


Necessary Conditions Causal condition must (almost always) be present for outcome to occur.

Outcome is a subset of Cause

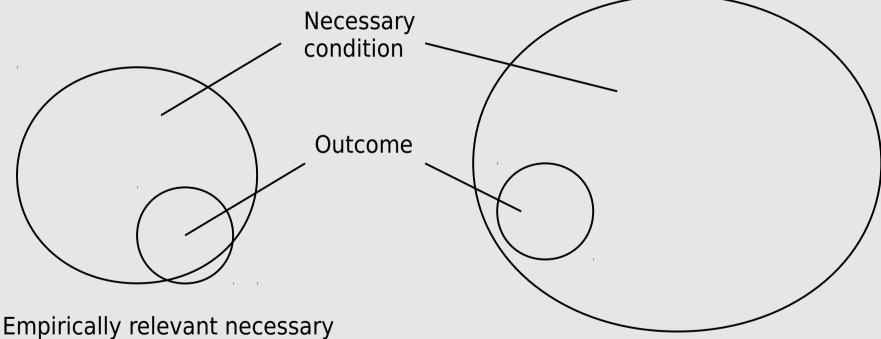

Fuzzy Subset Relationship Consistent with Necessity

Outcome is a subset of Cause ($X \ge Y$)


Assessing Necessary Conditions

• *Consistency* measures degree to which subset relationship is "consistent" with necessity

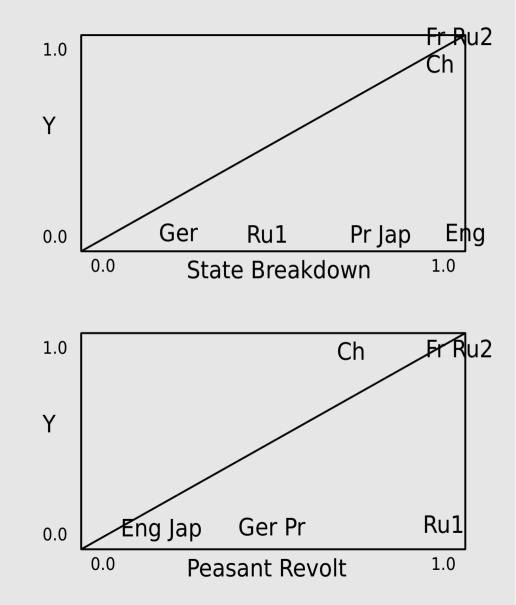
Х


Subset relationship consistent with necessity

Subset relationship with substantial inconsistency

Assessing Necessary Conditions

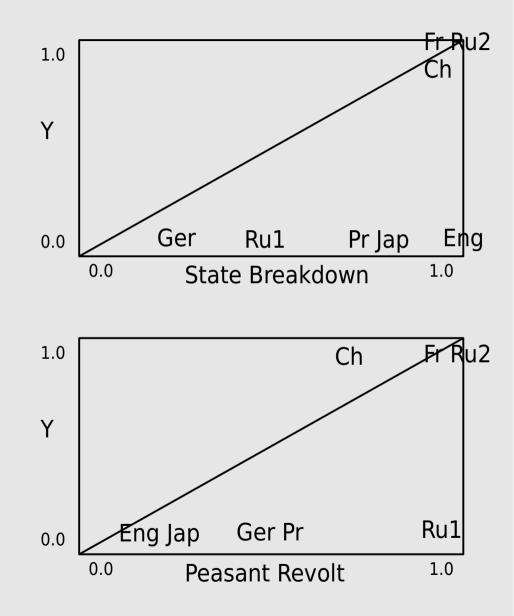
 Coverage measures how "relevant" a necessary condition is



condition (high consistency)

Empirically irrelevant necessary condition (perfect consistency)

Testing for Necessary Conditions


Revolution	Brk	Rev	Success?
France 1789	1.00	1.00	1.0
Russia 1917	1.00	1.00	1.0
China 1911	1.00	0.75	1.0
England 1688	1.00	0.00	0.0
Russia 1905	0.49	1.00	0.0
Germany 1848	0.25	0.49	0.0
Prussia 1807	0.75	0.49	0.0
Japan 1868	0.75	0.00	0.0

Testing for Necessary Conditions

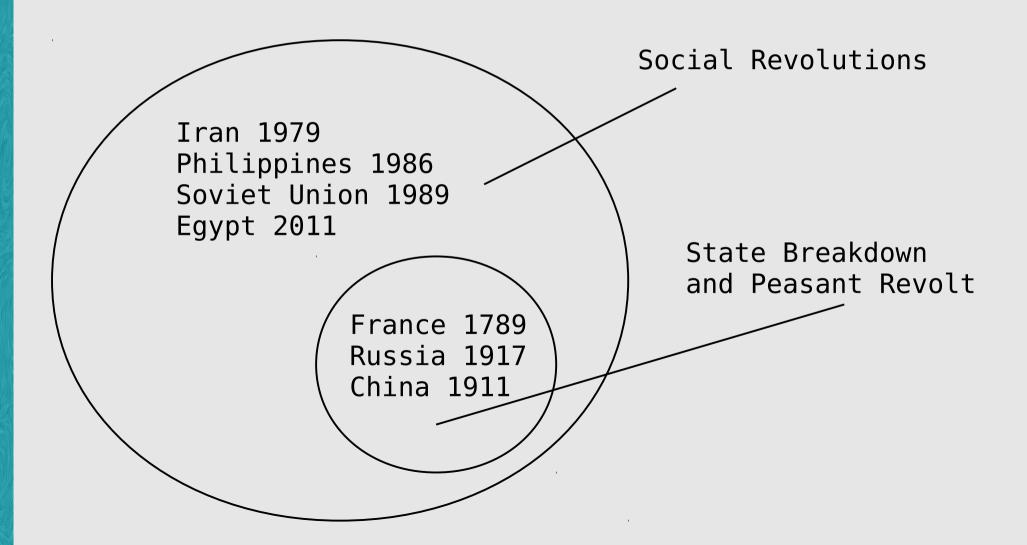
Revolution	Brk	Rev	Success?
France 1789	1.00	1.00	1.0
Russia 1917	1.00	1.00	1.0
China 1911	1.00	0.75	1.0
England 1688	1.00	0.00	0.0
Russia 1905	0.49	1.00	0.0
Germany 1848	0.25	0.49	0.0
Prussia 1807	0.75	0.49	0.0
Japan 1868	0.75	0.00	0.0

Term	Consis	Cov
BREAKDOWN *	1.00	0.48
REVOLT	0.92	0.58
Solution	0.92	0.69

Testing for Necessary Conditions

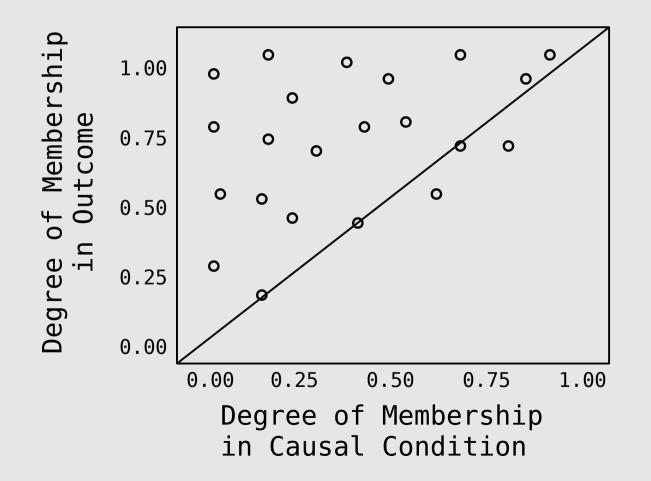
- Assess consistency before coverage
- Join terms with logical or (e.g., A+B+C)
- Many solutions are possible
- Use of theory is crucial

Analyzing Sufficient Conditions

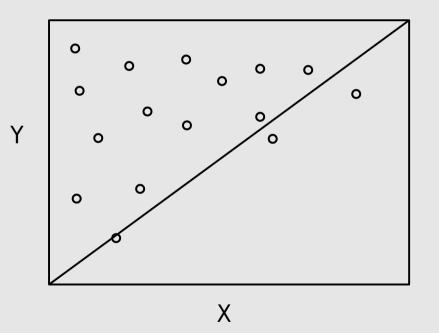

Sufficiency Analysis

- More mature than necessity analysis; QCA development—and applications—have focused on sufficiency analysis
- Emphasis on causal complexity (a.k.a., multiple conjunctural causation, "recipes," equifinality, or INUS conditions)

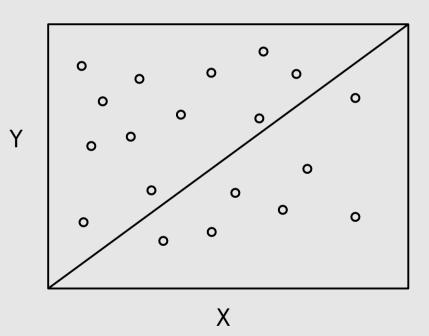
Feature	fs/QCA	libfsqca
Based on RSI Algorithms	\checkmark	\checkmark
Complex Solutions	\checkmark	\checkmark
Intermediate Solutions	\checkmark	
Parsimonious Solutions	\checkmark	\checkmark
Impossible Conditions		\checkmark
Contradictions		\checkmark


Sufficient Conditions Outcome (almost) always occurs when causal condition is present.

Cause is a subset of Outcome

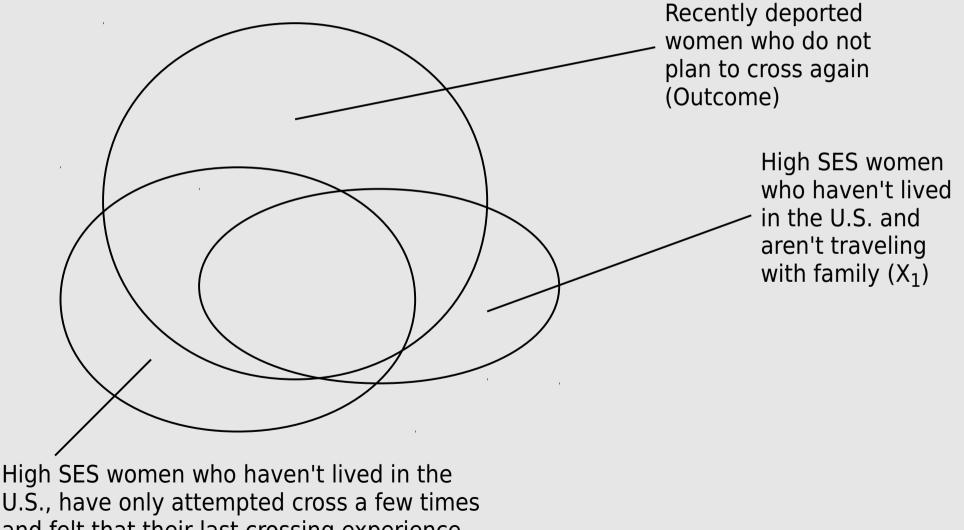

Fuzzy Subset Relationship Consistent with Sufficiency

Cause is a subset of Outcome ($Y \ge X$)



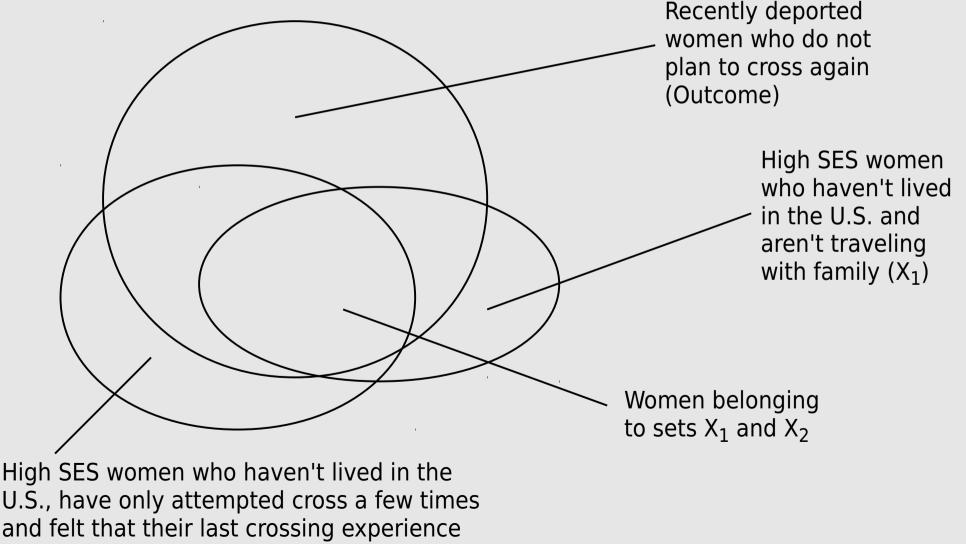
Assessing Sufficient Conditions

• *Consistency* measures degree to which subset relationship is "consistent" with sufficiency


Subset relationship consistent with sufficiency

Subset relationship with substantial inconsistency

Assessing Sufficient Conditions


Coverage measures the relative "importance" of each solution

U.S., have only attempted cross a few times and felt that their last crossing experience was very dangerous (X_2)

Assessing Sufficient Conditions

 Coverage measures the relative "importance" of each solution

was very dangerous (X_2)

Testing for Sufficient Conditions

Term	Consis	Raw Cov	Uniq Cov
HISES*liveus*travfam +	0.90	0.32	0.13
HISES*liveus*numcross*DANGER	0.82	0.48	0.26
Solution	0.86	0.58	

Truth Table Construction Truth table algorithm sorts observations into types

Obs	Dev	Urb	Lit	Brk
AT	.81	.12	.99	.95
BE	.99	.89	.98	.05
CZ	.58	.98	.98	.11
EE	.16	.07	.98	.88
FI	.58	.03	.99	.23
FR	.98	.03	.99	.05
DE	.89	.79	.99	.95
GR	.04	.09	.13	.94
HU	.07	.16	.88	.58
IE	.72	.05	.98	.08
IT	.34	.10	.41	.95
NL	.98	1.00	.99	.05
PL	.02	.17	.59	.88
PT	.01	.02	.01	.95

	Dev	Urb	Lit	Consis	Y	Consis Obs	Inconsis Obs
1	Т	Т	Т	0.41	F	DE	BE, CZ, NL
2	Т	Т	F	—			
3	Т	F	Т	0.51	F	AT	FI, FR, IE
4	Т	F	F	—			
5	F	Т	Т	—			
6	F	Т	F	—			
7	F	F	Т	0.83	Т	EE, PL	HU
8	F	F	F	0.99	Т	GR, IT, PT	

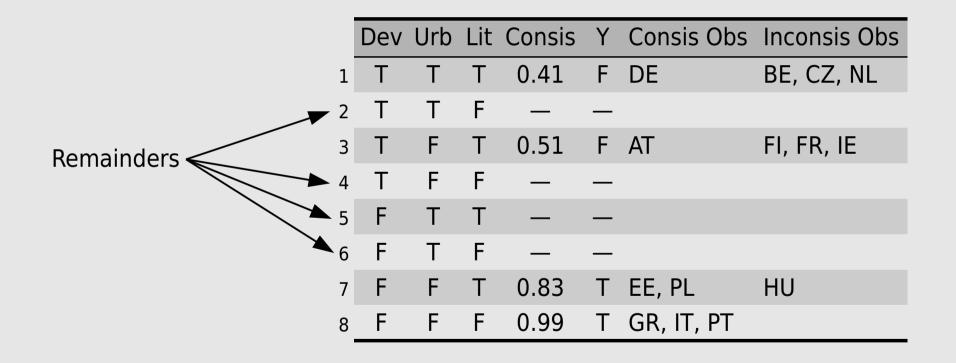
Truth Table Construction Truth table algorithm sorts observations into types

Obs	Dev	Urb	Lit	Brk	DUL	DUI	DuL	Dul	dUL	dUl	duL	dul
AT	.81	.12	.99	.95	.12	.01	.81	.12	.12	.01	.19	.01
BE	.99	.89	.98	.05	.89	.02	.11	.01	.01	.01	.01	.01
CZ	.58	.98	.98	.11	.58	.02	.02	.02	.42	.02	.02	.02
EE	.16	.07	.98	.88	.07	.02	.16	.07	.07	.02	.84	.02
FI	.58	.03	.99	.23	.03	.01	.58	.03	.03	.01	.42	.01
FR	.98	.03	.99	.05	.03	.01	.97	.02	.02	.01	.02	.01
DE	.89	.79	.99	.95	.79	.01	.21	.11	.11	.01	.11	.01
GR	.04	.09	.13	.94	.04	.04	.04	.09	.09	.09	.13	.87
HU	.07	.16	.88	.58	.07	.07	.07	.16	.16	.12	.84	.12
IE	.72	.05	.98	.08	.05	.02	.72	.05	.05	.02	.28	.02
IT	.34	.10	.41	.95	.10	.10	.34	.10	.10	.10	.41	.59
NL	.98	1.00	.99	.05	.98	.01	.00	.00	.02	.01	.00	.00
PL	.02	.17	.59	.88	.02	.02	.02	.17	.17	.17	.59	.41
PT	.01	.02	.01	.95	.01	.01	.01	.02	.01	.02	.01	.98

Truth Table Construction Truth table algorithm sorts observations into types

Obs	Dev	Urb	Lit	Brk
AT	.81	.12	.99	.95
BE	.99	.89	.98	.05
CZ	.58	.98	.98	.11
EE	.16	.07	.98	.88
FI	.58	.03	.99	.23
FR	.98	.03	.99	.05
DE	.89	.79	.99	.95
GR	.04	.09	.13	.94
HU	.07	.16	.88	.58
IE	.72	.05	.98	.08
IT	.34	.10	.41	.95
NL	.98	1.00	.99	.05
PL	.02	.17	.59	.88
PT	.01	.02	.01	.95

	Dev	Urb	Lit	Consis	Y	Consis Obs	Inconsis Obs
1	Т	Т	Т	0.41	F	DE	BE, CZ, NL
2	Т	Т	F	—			
3	Т	F	Т	0.51	F	AT	FI, FR, IE
4	Т	F	F	—			
5	F	Т	Т	—			
6	F	Т	F	—			
7	F	F	Т	0.83	Т	EE, PL	HU
8	F	F	F	0.99	Т	GR, IT, PT	


Reading Truth Tables Truth table assesses consistency between types and outcome

Democracy usually did not break down in countries that were (a) developed, urbanized, and literate (row 1) or (b) developed, not urbanized, and literate (row 3).

Democracy usually did break down in countries that were (c) not developed, not urbanized, and literate (row 7) or (d) not developed, not urbanized, and not literate (row 8)

	Dev	Urb	Lit	Consis	Y	Consis Obs	Inconsis Obs
1	Т	Т	Т	0.41	F	DE	BE, CZ, NL
2	Т	Т	F	—			
3	Т	F	Т	0.51	F	AT	FI, FR, IE
4	Т	F	F	—			
5	F	Т	Т	—			
6	F	Т	F	—			
7	F	F	Т	0.83	Т	EE, PL	HU
8	F	F	F	0.99	Т	GR, IT, PT	

Remainders are logically possible conditions lacking empirical instances

Invariance in Truth Tables

	Dev	Urb	Consis	Y	Consis Obs	Inconsis Obs
1	Т	Т	0.41	F	DE	BE, CZ, NL
2	Т	F	0.51	F	AT	FI, FR, IE
3	F	Т	—	—		
4	F	F	0.89	Т	EE, GR, IT, PL, PT	HU

	Dev	Urb	Lit	Consis	Y	Consis Obs	Inconsis Obs
1	Т	Т	Т	0.41	F	DE	BE, CZ, NL
2	Т	Т	F	—			
3	Т	F	Т	0.51	F	AT	FI, FR, IE
4	Т	F	F	—			
5	F	Т	Т	—			
6	F	Т	F	—			
7	F	F	Т	0.83	Т	EE, PL	HU
8	F	F	F	0.99	Т	GR, IT, PT	

To Primitive Expressions:

Term	Consis	Raw Cov	Uniq Cov	Observations
dev*urb*LIT +	0.83	0.42	0.27	EE, PL, [HU]
dev*urb*lit	0.99	0.40	0.24	GR, IT, PT
Solution	0.88	0.66		

To Primitive Expressions:

Term	Consis	Raw Cov	Uniq Cov	Observations
dev*urb*LIT +	0.83	0.42	0.27	EE, PL, [HU]
dev*urb*lit	0.99	0.40	0.24	GR, IT, PT
Solution	0.88	0.66		

To Prime Implicants:

Term	Consis	Raw Cov	Uniq Cov	Observations
dev*urb	0.89	0.71	0.71	EE, PL, GR, IT, PT, [HU]
Solution	0.89	0.71		

Reduce Prime Implicants (Complex Solution):

Term	Consis	Raw Cov	Uniq Cov	Observations
dev*urb	0.89	0.71	0.71	EE, PL, GR, IT, PT, [HU]
Solution	0.89	0.71		

Reduce Prime Implicants (Complex Solution):

Term	Consis	Raw Cov	Uniq Cov	Observations
dev*urb	0.89	0.71	0.71	EE, PL, GR, IT, PT, [HU]
Solution	0.89	0.71		

Reduce Prime Implicants Using Remainders (Parsimonious Solution):

Term	Consis	Raw Cov	Uniq Cov	Observations
dev	0.82	0.73	0.73	EE, PL, GR, IT, PT, [HU]
Solution	0.82	0.73		

Constructing Intermediate Solutions

Complex Solution Parsimonious Solution Acsir + i + ACSir + SR ASIR

Intermediate Solution #1

Intermediate Solution #2 Air + ASIR

Factoring Results

Initial Solution:

ELECTIONS * POLICE + urban * POLICE + CONFLICT * ELECTIONS * URBAN + CONFLICT * elections * urban + conflict * ELECTIONS * urban

Factored Solution:

POLICE (ELECTIONS + urban) +
URBAN (CONFLICT * ELECTIONS) +
urban ((CONFLICT * elections) + (conflict * ELECTIONS)